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A continuously stratified fluid, when subjected to a weak periodic horizontal 
acceleration, is shown to be susceptible to  a form of parametric instability whose 
time dependence is described, in its simplest form, by the Mathieu equation. Such 
an acceleration could be imposed by a large-scale internal wave field. The growth 
rates of small-scale unstable modes may readily be determined as functions of the 
forcing-acceleration amplitude and frequency. If any such mode has a natural 
frequency near to half the forcing frequency, the forcing amplitude required for 
instability may be limited in smallness only by internal viscous dissipation. 
Greater amplitudes are required when boundaries constrain the form of the 
modes, but for a given bounding geometry the most unstable mode and its 
critical forcing amplitude can be defined. 

An experiment designed to isolate the instability precisely confirms theoretical 
predictions, and evidence is given from previous experiments which suggest that 
its appearance can be the penultimate stage before the traumatic distortion of 
continuous stratifications under internal wave action. 

A preliminary calculation, using the Garrett & Munk (197%) oceanic internal 
wave spectrum, indicates that parametric instability could occur in the ocean 
at scales down to that of the finest observed microstructure, and may therefore 
have a significant role to play in its formation. 

1. Introduction 
I n  nature, the tendency for wavelike motions of all scales to lose their coherence 

is well known. In  many circumstances weak waves (gravitationally or rotationally 
restored) are demonstrably ‘stable’ in the sense that their form is invariant with 
time or dispersion, yet when they are permitted to grow to some finite amplitude 
their identity is rapidly lost, with or without the accompaniment of ‘turbulence’ 
(indeed, the title of turbulence may reflect not so much the intrinsically random 
nature of the resultant structure but its apparent complexity). 

Some use has been made of conventional stability criteria applied to localities 
within the wave field in order to predict the onset of finite amplitude instability. 
For internal waves in a continuously stratified medium, Orlanski (1972)) for 
example, adopted a criterion for static gravitational instability, V p .  g < 0 
(p = density, g = gravitational acceleration), and found that, until this condition 
was reached, sta,nding wave motion remained describable by the inviscid equa- 
tions of motion. Well before that stage was attained, however, the initially simple 
wave field became profoundly modulated by fine-structure (apparently neglected 



665 A .  D .  McEwan and R. M .  Robimon 

by Orlanski in deriving his kinematic expressions for the critical wave amplitude). 
His figure 5 shows this clearly, and entirely similar effects have been seen else- 
where, e.g. McEwan (1971, figure 7 d) .  There is little doubt that these modulations 
were major contributors to the eventual state of static instability. 

In  experiments on the forced interaction of a pair of internal wave beams 
(McEwan 1973) fine-scale distortion was detected when the isopycnic slope was 
large, but significantly short of that required for static instability. 

Static instability is unquestionably a primary mechanism for the production 
of ‘true ’, statistically random turbulence within a stratified medium, because it 
results in the rapid and irreversible growth of disturbances of small scale. It is 
important to realize, however, that this state is commonly the end result of the 
evolution of a more sensitive but slower developing instability of the original motion. 

A particularly ubiquitous instability of this kind is due to resonant interaction. 
For internal waves the process is of second order, so that instability can develop 
upon ;I dominant wave by the amplification (from background noise) of apair of 
parasitic free wave modes which form a resonant triad with the dominant wave. 
It has been found (McEwan 1971; Martin, Simmons &‘Wunsch 1972; McEwan, 
Mander & Smith 1972) that, even in bounded motions, the resonant triads are 
numerous and the wave amplitude €or instability is small. 

In  spite of a predisposition towards resonantly interactive instability, the 
slowness with which this develops when triad members have to grow from small 
levels could mean that in real situations less sensitive but more rapidly acting 
processes will dominate. The fact that the internal wave spectrum (though not 
heavily populated by resonant triads) is usually dense leads naturally to the 
conjecture that there might commonly occur an unstable interaction between 
pairs of waves having suitable properties. 

Such an interaction would involve the forcing of one of the waves at  the 
frequency of the other wave (the natural frequencies in general being unequal). 
Time dependence is thus expressed by a differential equation containing periodic 
coefficients. Under circumstances where spatial periodicity constraints can be 
relaxed this takes the form of the Mathieu equation, and the process is recog- 
nizably a parametric instability. 

Numerous applications of this equation arise in mechanics and physics (see, 
for example, Brillouin 1953). Parametric resonance shows itself in the excitation 
of subharmonic surface waves through vertical acceleration (Benjamin & Ursell 
1954), edge waves (Bowen & Inman 1969) and cross-waves (Garrett 1970; 
Mahony 1972). Rhines (1970) derived dispersion relations and applied these to  
an internal wave in a sintisoidal shear flow and Orlanski (1973) suggested that 
diurnal changes in stability could parametrically excite internal gravity waves in 
the atmosphere. Very little attention, however, appears to have been given in 
the case of stratified media to parametric excitation through the presence of 
concurrent waves, although this can be regarded as a degenerate example of the 
much-studied processes of resonant wave interaction. 

This paper presents the basic theory (3 2) and experiments ( $ 3 3  and 4) to 
verify the process in its simplest form. It is shown that a periodic rotation of the 
isopycnics of ;I uniform stable stratification, as imposed by a large-scale plane 
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internal wave, is liable to yield instability tending to produce density perturba- 
tions of finer spatial scale, and at an angle to the horizontal shallower than the 
characteristic angle of the large-scale wave. Present and previous observations 
( § 5) suggest that these perturbations are the penultimate stage in the formation 
of an irreversible ‘traumatic ’ distortion of a continuous density field. Using the 
Garrett & Munk ( 1 9 7 2 ~ )  spectrum, a simplified examination of possible applica- 
tion to oceanic internal wave structure is made ($6). From this, parametric 
instability seems likely to occur in waves of scales down to that of the finest 
observed microstructure. 

2. Theory 
2.1. Parametric instability in a locally uniform background oscillation 

The simplest illustration of the mechanism of parametric instability in a stratified 
fluid arises in the case when the unstable mode has a scale very much smaller than 
the scale of the background motion on which it grows. 

Consider the motion of a fluid element within a body of stably stratified fluid 
under the action of a large-scale motion. We adopt a co-ordinate frame ( x , z )  
fixed relative to this element; the frame then undergoes translation and rotation 
through an angle aft) to the horizontal so that its x axis remains aligned with the 
isopycnal surface po(O, t )  = constant. The density po(x, z,  t )  is defined only by the 
large-scale field, and the pre-existing static stratification, whose vertical gradient 
is denoted by PA,, taken to be 1oca.lly constant. This density field is perturbed by 
fine-scale motion (u, w )  of dimensionless magnitude o(B),  resulting in a net density 
given by 

P1= P ( X , ~ , t ) + P , + P O ,  

and net motion u, = u, + u, 20, = w, + w, in the frame (x, 2). 

The equation for momentum relative to a moving frame is 

= -Vp+p~V2u, 
at 

where a, and Q are, respectively, the absolute acceleration and rotation rate of 
the frame, F is the body force and the other terms have their usual meaning. In 
the present case, this resolves to 

pl(Dul/Dt+a- S ~ o i - z i i + x o i ~ )  = - ap /~x-p ,gs ina+p ,~V~~, ,  

pl(Dwl/Dt + 6 +xu& + xii + zoi2) = - aplaz - p l g  cos a! +pl vV2wl, J 
where a and b are components of the absolute acceleration of the element in the 
x and z directions. 

1. (2.1) 

Continuity and mass conservation require that 

Dp,/Dt = 0, au,/ax + awllax = 0. (2.2) 

If the large-scale motion is a plane internal wave of horizontal and vertical 
wavenumbers k,  and m,, and frequency w,, its amplitude may be defined in 
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terms of a ;  with capitals denoting components relative to a stationary frame 
( X ,  Z), 

Uo = -cc(X,Z,t)womo/k& Wo = cc(X, Y , t ) w o / k o  

and 

etc., to second order in a, where 

Po = 4x3 z, t)p;,/w,k,, 

a ( X ,  2, t )  = exp ( i (koX -i- moZ + wet)). 

Locating the mean position of the (x, z )  frame origin on X = 0, Z = 0,  the field 
can be rewritten relative to this frame, and substituted in (2.1) and ( 2 . 2 ) .  The 
resulting expressions contain terms of ascending order in a, x and z, but if we 
confine our attention to terms of first order in a and e and to x and z scales very 
much less than kgl and mi1, (2.1) and ( 2 . 2 )  combine to give -(---)--~H+I) a au aul =p,(Fcosa--sina 9 aP ap ) + v  (a;: --- avz,) 

at az ax a2 ax 

appt +piow = 0, (2.4) 

( 2 . 5 )  aupx + aw/az = o. 
The term (womo/k:) oi in ( 2 . 3 )  arises from horizontal accelerations imposed by the 
large-scale field. These become significant only as w$mo/k$ N g; with the dis- 
persion relation (2.7) this implies that phom0 - ,ooo(mg + k;), i.e. a field which has 
a vertical scale comparable with the density scale length. I n  most situations this 
is an unlikely condition; furthermore the term due to the vertical acceleration 
of the large-scale field is O ( a z ~ ; / k , )  and does not assume significance unless 
a N mo/ko, in which case gross nonlinearities are already present. To all practical 
intents, therefore, gravity imposes the only important body force. 

From (2.3) the angular displacement due to the large-scale mode satisfies 

2 + [N%g/(kE+mi)] sina = 0, (2.6) 

which is the equation for small amplitude motion of a simple pendulum with 
a frequency (do complying with the inviscid dispersion relation for internal waves 

(wj/N)2 = rcjZ/(k; + m:) = (1  + Z:)-I, (2.7) 

where li F mj/ki is the cotangent of the characteristic angle pj of wave mode j, 
and N = - gp;,/po0, the buoyancy frequency. 

The foregoing equations become accurate to large a if the large-scale mode is 
a standing wave whose vertical and horizontal wavenumbers are equal; then, 
by (2.7), oo = N/24 and, in the vicinity of the origin, the motion approximates to 
what will be called henceforth the basic (cylindrical) mode, a circular solid-body 
rotation about the origin. I n  stream-function terms this has the form 

( 2 . 8 )  Y = Na, 2+(x2+22) cos (Nt/24) ,  

where aM is the maximum angular displacement. 
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Combining (2.3) and (2.6) the disturbance-mode density equation becomes 
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a 2  aP - (V’p) - vV4- - N2 
at2 at 

The time factor in solutions to this equation in the form p = R(t) exp i ( k x  + mz) 
satisfies the equation 

R + vk2( 1 + Z2) .€? - N2(Zsin a(t)  - cos a(t))  R/( 1 + Z2) = 0, (2.10) 

with Z as defined above. 
By the substitution 

S = R exp (&vk2( 1 + Z2) t )  (2.11) 

equation (2.10) is rewritten as 

# - [N2(Z sin a(t)  - cos a( t ) )  + 4v2k4( 1 + Z 2 ) 1  X/( 1 + Z2) = 0. (2.12) 

This second-order equation with periodic coefficients possesses solutions of the 
form S(t)  = e@P(t), where F(t)  has the same periodicity as a; for small a’s, 
a(t) M aM cos (o,t) and the equation can be simplified to the standard form of the 
Mathieu equation, 

d2S/ds2 + ( A  - 2Q cos 2s) S = 0, (2.13) 
by the substitutions 

} (2.14) 
= 4wot, A = 4 [ - - t V 2 ~ 4 ( 1 + z 2 ) + ~ 2 1 ( 1 + z 2 ) - - 1 W 0 2 ,  

Q = 2N2Z2a,,~,2( 1 + Z2)-l. 

The properties of this equation are well documented (see Abramowitz & 
Stegun 1965). Floquet solutions have the form S(s)  = e*Q‘sPp( ks), where 
cosnp = X1(n) and S, satisfies (2.13) with X,(O) = 1 and S;(O) = 0. These solutions 
are generally linearly independent and divide the A*, 2Q/A plane, see figure 1, 
into regions of instability (p complex) and stability (p real). In unstable regions 
contours of constant eibz are closest to the A axis in the vicinity of A4 = an 
integer, so that, for a given growth exponent, Q (and therefore cq,,,) reaches 
a minimum for specific values of 1. Therefore the perturbations growing upon 
a wave field of frequency oo will tend to be (neglecting small viscous terms in A )  
aligned a t  an angle to the constant density surfaces of 

arcot Z = k arcsin (Iw,/N2+), (2.15) 
where I is an integer 2 I. 

If part of a solution S(s)  represents a free wave mode whose frequency w is 
given by (2.7)t then for the most unstable modes, by substitution in (2.15)) 

(2.16) 

The correspondence between the foregoing process and resonant interaction 

w ~f: &Iwo < N. 

in weakly nonlinear systems is evident. For A8 near 1, 

ip = i -i- Re (ip) 

and for small Q the growing Floquet solution has the form 

X(s) = exp {Re (ip) s} (C-, e-is + C, eis + O(Q)} (2.17) 

t Near A* = 1 there are constraints on the relative magnitudes of ‘free’ and ‘forced’ 
components of S(s) ; see Rhines (1970). 
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3. 1.0 
% 

0 1 .o 2-0 
A* 

FIGURE 1. Contours of constant Re(eiPP"), in unstable regions. The figure is 
abstracted from figures 20.8 and 20.9 of Abramowitz & Steguri (1965). 

(cf. Abramowitz & Stegun 1965, equation 20.3.8with v = pandz = s). Aresonant 
triad is made up of the basic motion and the wave components 

C-, exp { - i(Qo,t - kx - mz)}, Go exp {i(&,t + kx + mz)}, 

indicating that I = 1 corresponds to a second-order resonant interaction. 
Similarly the cases I = 2 and 3 correspond to third- and fourth-order resonant 
interactions, the interacting components being themselves products of forced 
interaction. Their rates of growth are correspondingly smaller, and of course in 
the present application terms of higher order in a would have to be retained. If 
the modes within a system are predetermined or restricted by boundaries and 
are, when interacting, incapable of satisfying an exact resonance condition, then 
the capacity for the unstable growth of one mode under the periodic excitation 
of another is determined by the appropriate p(&, A ) .  By (2.11), if 

Re ( ip(&,A))  > vk2(1 +Z2)/oo (2.18) 

unstable growth will occur. In  a bounded, spatially non-uniform large-scale wave 
field of volume V through which the perturbation can disperse uniformly, the 
instability condition is evidently 

Re ( 2 i S  p(&, A )  oo E d V > net energy dissipation rate, 

where E is the energy contained in the unstable mode per unit volume. Dissipa- 
tion at the boundaries may contribute to the net dissipation. 

V ) 

2.2. Application to the i n~ tab i l i~y  of a basic cylindrical mode in 
a real contained fluid 

The cylindrical mode (2.8) is particularly appropriate for experimental investi- 
gation for two reasons. 

(i) Motion terms relative to the axis of rotation, U and W ,  and the particle 
accelerations a and b disappear, and the modal wavenumber is zero, so (2.9) is 
accurate to second order in a. 
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(ii) Boundaries to the mode are cylindrical; hence (except for viscous effects) 
there occurs no excitation of spurious high wavenumber disturbances through 
the forcing of the mode. 

The natural modes for a uniform stratification within a cylindrical boundary 
x2+z2-a2 = 0 and conforming to the first-order equation for the perturbation 
stream function 

have been determined by Barcilon (1968) in the analogous context of inertial 
waves. For the present purpose they can be written as 

(2.19) V2@,, + N2@%, = 0 

@ g K  = A$& [FmK(<JfK/a) - ( - i)iKqK(tMK/a)] exp (iN cosPMKt), (2*20) 

where pLltIc = &rM/K (M and K mutually prime integers, K < M ) ,  

[ M K  = cos P M K  + sin P$lK, 
CXK = 'OS PMK- sin P M K  

and qK is the Chebyshev polynomial or orderjK, q K ( x )  = cos ( jK cos-1x). A:% is 
the amplitude in stream-function units. There exists a doubly infinite countable 
set of eigenfrequencies Ncosp,,,, and for each frequency there is a countably 
infinite set of eigensolutions or modes $gK. However, in a real fluid the higher 
modes are suppressed by viscosity. 

In systems of modest scale viscous dissipation a t  the boundaries far exceeds 
that in the interior. The total dissipation within the boundaries is 

pu/jj(V x u)2dV.  (2.21) 

D, = @/J ( V 2 @ $ ~ ) 2 d X d z ,  (2.22) 

To a close approximation, the interior dissipation DI is determined by integrating 
the inviscid field to the boundaries, i.e. 

2 xz+e'<a' 

where b is the cylinder breadth. 
The boundary-layer scale and therefore the dissipation depend on the angle 0 

of the boundary to surfaces of constant density in the interior. The dissipation 
can be estimated by assuming that locally this angle is constant and effects of 
velocity gradients in the direction parallel to the boundary may be neglected; 
then the boundary-layer motion is given, on the end walls y = 0, b (see, for 
example, McEwan 1971), by 

u = ui[cos wt - e-5 cos (wt - y)], 1 
w = wi[cos wt - e-5 cos (wt + [)I.) 

(ui, wi) is the interior motion and 

(2.23) 

where y is the interior-directed normal co-ordinate. 

43 PLM 67 
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On the cylindrical walls the tangential veIocity component q ( q 2  = zc2 + w2) is 

b lA$&-(jK) c0s26 
circular-wall dissipation D, = p - ( w v ) z  a 2e 2 J I n f 2 ( B ) l z p -  1 

where 

4 
do,  (2.26) 

q = qi [cos wt - e-6 cos (wt + d t ) ] ,  (2.24) 

a = 1, cos2e 2 cos2p~lfllli. 

This expression is not valid near the singular points cos2 0 = cos2pllfK but gives 
a reliable (although slightly overestimated) value of the total dissipation. Substi- 
tuting the above in (2.21) and integrating over time gives, in the mean: 

end-wall dissipation DE = 24p(wv)&(l cos2/3+sin2P)S&'&(jK)2n, (2 .25)  

where 

1 = t a n p  and w = N cosp. Here p E pAlfK. The total mean energy of the mode is 

E = ) p / / /  [$: + kf] d B = ~ b A g & ( j K ) ~  7~ 

and the rate of viscous attenuation can be determined by equating dEfd t  to 
DI + DE + D, as determined above; thus without forcing, the amplitude of an 
individual mode is 

A(j) - A$&(t = 0) e-K't, M K  - 

where K* = (DI + DE + DC)/2E. (2.27) 

From (2.20) the basic cylindrical mode has the form 

cf. (2.8). The accuracy of the above dissipation formulae was tested by measuring 
experimentally the rate of decay of this mode, using the apparatus and methods 
to be described in $3 .  Figure 2 shows a comparison of the observed decay in 
amplitude after cessation of the 'horizontal' method of forcing with the rate 
predicted by (2.27) using appropriate values for N and v. Agreement of the mean 
K* is to within better than 3 yo, with the theoretical estimate slightly higher, as 
expected. 

Knowledge of the decay rate of specific modes is necessary in order to identify 
which of these is most unstable to  parametric excitation. For bounded systems 
it has proved justifiable (e.g. McEwan 1971) to replace the internal dissipation 
within an unstable mode by its total dissipation; thus in the condition for 
instability (2.18) the right-hand side is replaced by K * ,  i.e. 

Re (Bip(&, A )  wo) 2 K* 

for instability. 
(2.28) 
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I I I I 1 
0 2 4 6 8 10 

Cycles of oscillation, w , t / 2 ~  

FIGURE 2. Comparison of predicted and observed viscous damping rates for the basic 
cylindrical mode. 0, experiment at half-cycle intervals; __ , theoretical prediction, 
equation (2.27). 

3. Design and conduct of the experiment 
As pointed out in 92.2, a horizontal circular cylinder is probably the most 

convenient boundary geometry for experimental verification of parametric 
instability. An additional advantage is that, in the absence of a forced spatial 
structure for the basic mode, low-order resonant interaction cannot occur, there- 
fore permitting the unambiguous detection of off-resonant parametric instability. 

Hence the following arrangement was adopted. Reference is made to figure 3. 
The test chamber was a right circular cylinder with plane ends of radius 15.24 em 
and 22.9 em long. This fitted neatly into a rectangular tank with parallel plate- 
glass sides 22.9 cm apart, such that the cylinder axis lay horizontal and central 
within the tank. The edges of the cylinder were sealed against the glass with 
modelling clay. Filling holes, 2.5 em in diameter with vertical axes in the mid- 
plane of the cylinder, had shaped silicone rubber plugs which could be pushed 
home by handles outside the tank, to present a smooth cylindrical surface on the 
inside of the chamber. Skirts extending nearly to the top and bottom of the tank 
surrounded the filling holes. The tank had a watertight lid, and could be com- 
pletely filled through a mushroom opening in the bottom, after opening the plugs 
and a bleed hole in the lid. 

It turns out that, in the arrangement described, if the density of the liquid 
(in our case, salt-stratified water) increases linearly with the volume admitted, 
a linear stratification is attained within both the tank and the test chamber, 
provided that the chamber axis is on the central plane of the tank, the chamber 
is symmetrical about that plane and the tank is completely filled. The skirts 
surrounding the filling holes were needed to avoid undesirable mixing which 
occurred as the liquid levels reached these holes. 

In  practice, the density-volume relation was established using the two-tank 
method of filling; the chamber density gradient was accurately linear except in 
the top and bottom 10 yo or so of the depth, where it weakened monotonically, 

43-2 
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\ 

FIGURE 3. Experimental chamber. ( a )  Plug handle. ( b )  Skirt. (c )  Bleed hole plug. (d )  Silicone 
rubber plugs. (e) Cylindrical chamber. (f) Rectangular tank. (9) 0.63 em plate-glass sides. 
(h)  Filling mushroom. 

apparently because of mixing a t  the holes, which occurred when the free surfaces 
met just as filling was completed. A test profile is given in figure 7. 

The reason for using a cylindrical chamber was that the fluid could be set into 
a pendulum mode of solid-body oscillation, the boundaries then exciting no other 
modes. The forcing acceleration was thus uniform throughout the volume. 
Furthermore, possible interacting modes were constrained in structure by the 
boundaries and, as indicated in $2.2, were limited by the requirement that, 
from (2.20), 

arcos wlN = nlMl2K, 

where for high K and N dissipation becomes dominant. 
Two methods for initiating the basic, solid-body oscillation were attempted. 
For the first method (I), the whole assembly was mounted upon a frame which 

hung from a pair of horizontal sliding-door tracks (see figure 4a).  After first 
determining the natural frequency of the solid-body rotation mode, the assembly 
was pushed smoothly to and fro through a distance of up to 3 m several times a t  
this frequency, and then observed by arresting it within the beam of a schlieren 
optical system incorporating two f 8 spherical mirrors 31 cm in diameter. Owing 
to the abruptness of the forcing procedure, the initial transient oscillations, 
though small in amplitude, were abundant, and identifiable instabilities appeared 
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P 
FIGURE 4. Methods of forcing. (a) Horizontal method. ( b )  Pendulum method. 

quickly, then decayed as the basic oscillation diminished in amplitude. By careful 
timing, that oscillation could be sustained a t  a moderately steady level by 
repeated movement of the frame through smaller distances. 

Steadiness was not the main problem with this method, however. Because the 
cylindrical walls did not move with the fluid, a periodic boundary layer was 
formed on them. From (2.22), the thickness scale of this layer depended upon the 
angle of the wall, and became large as this angle approached the characteristic 
angle arcosw,/N, in this case approximately in. By virtue of its displacement 
effect, therefore, the cylindrical boundary layer was a strong generator of wave 
modes of basic frequency a,,, which tended to swamp the effects sought. In  
addition the layer was subject to instabilities (now being studied separately) 
tending to produce intrusive mixing. 

These undesirable effects were eliminated in the second method (11) of forcing 
the basic oscillation, in which the whole assembly was suspended from a hori- 
zontal pivot 33.5 cm directly above the cylindrical chamber axis (see figure 4 b) .  
A heavy counterweight above the pivot made the assembly into a compound 
pendulum whose period could be adjusted to correspond roughly to that of the 
basic internal mode. A stiff flexible linkage (a long steel cable) connected the 
pendulum to a crank driven through a gearbox by an infinitely variable, precisely 
speed-controlled d.c. motor. 

With careful adjustment of the crank throw and speed, the swing of the 
assembly could be synchronized precisely with the liquid inside the cylindrical 
cavity, so that negligible relative movement occurred, and the boundary-forced 
modes and mixing disappeared. Unstable modes took a great deal longer to 
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develop, but since the swing amplitude was constant and could be accurately 
adjusted, it was possible to determine with precision the critical amplitude below 
which instabilities vanished. 

4. Results 
4.1. Visualizations 

Figures 5 and 6 (plates 1-5) are a selection of schlieren photographs of the develop- 
ment of parametric instability using the horizontal and pendulum forcing 
methods described in the previous section. For all of these the image of a knife- 
edge obscuring the lower half of a diffused quartz-iodine-tungsten source (about 
4 cm2 in diffuse area) was refocused on a knife-edge within a 1 em circular 
aperture. The system was effectively sensitive onIy to components of the density 
gradient normal to the edge. The chamber image was refocused within a 35 mm 
camera body. Close examination of the figures shows a regular fine-scale diagonal 
pattern probably caused by polishing marks in the plate-glass chamber ends. 
The small black dots are neutrally buoyant beads used for determining the basic 
mode amplitude. 

Figure 5 (a )  shows the image, with a vertical knife-edge, 15 s after method I 
forcing of the basic solid-body rotation mode to an amplitude alTf(t = 0) of about 
5". The period of this mode was 10 s. The cylindrical boundary layer was laminar 
and the boundary-layer-forced (cross) mode was visible, aligned a t  45". No 
other modes were detected. Figure 5 ( b )  was taken under the same conditions but 
with an alw(t = 0) of about 15". The boundary layer had become turbulent and 
the cross-mode was stronger. Figure 5 (c) was taken 50 s later and clearly shows 
the presence of another mode of shallower angle. In  figure 5 ( d ) ,  taken after 
another 50 s, that mode was attenuating but delineated modes with a well-defined 
characteristic angle of 20". Figure 5 ( e )  was taken after the development of 
instability under the same conditions as above, but with an al,f(t = 0) of about 20". 
In  this case, finer-scale structure had developed and there were evidently 
'traumata' or intense irreversible distortions of the density field. 

Figures 6 ( a )  and ( b )  were taken during method I1 forcing. The oscillation 
period was 14.6s with a horizontal schlieren cut-off. Figure 6 (a )  shows a well- 
developed instability with a pendulum amplitude aiM of 14". The characteristic 
angle is about 19". After this photograph was taken, al,I was reduced to 8-5", 
where the instability decayed and disappeared. Figure 6 (b )  was then taken, and 
shows only very weak evidence of a boundary-layer-generated cross-mode. 
Because of the horizontal schlieren cut-off the density-gradient defects near top 
and bottom can be seen clearly. 

4.2. Measurement of critical amplitude 

Using method 11, the pendulum method, the critical angle for sustaining the 
unstable mode could be determined with precision, using frame-by-frame 
analysis of a 16 mm cine film of trajectories of neutrally buoyant particles. How- 
ever, some caution is needed in interpreting the results as a reliable verification 
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of the mechanism of parametric instability, and for this reason the procedure 
will be given here in some detail. 

The natural frequency w,, of the basic solid-body rotation mode could be 
measured to within k 0-1 yo. If the stratification were completely uniform this 
would give the buoyancy frequency of the liquid inside the cylindrical chamber, 
since then N = 24w,. In  non-uniform stratification, w,, is related to the density 
distribution p(z) through the following compound-pendulum relations: 

,, - - - gt./K2, 6 = arcsinzla, 

p(z = f a )  was known to sufficient accuracy, and by micrometer traversing of the 
schlieren knife-edge it was possible to calibrate? the apparatus and determine 
p'(z) -pL, where the latter term is the (inaccurately known) constant static 
density gradient within the central region of the chamber. w,(pE) was derived by 
substituting trial values of pi in the above equations, and interpolation to the 
measured w,, then gave the true p: and a complete ~ ' ( 2 )  profile. 

The importance of knowing this profile was that it allowed the frequency of 
possible free cylindrical modes to be determined more precisely than was possible 
by direct measurement. As indicated by (2.7), free modes of constant frequency w 
require complete closure of rays a t  the characteristic angle p to the vertical 
given by the dispersion relation 

where N 2 ( z )  = -9Plxz)lP(z). (4.3) 

From an experiment giving the results to be discussed below, the density 
profile was determined by the above techniques, and representative ray trajec- 
tories were calculated by integration of (4.2). These are shown in figure 7. The 
pendulum frequency w,, was 0.5894 If: 0.0003 s-l, and the rays illustrated were the 
low wavenumber modes whose frequency w ,  as defined by (4.2) above, came 
closest to the value &w0, viz. 0.276 5 0.0002 s-l. 

For the mode identified the viscous damping rate K* was calculated from (2.22) 
and (2.24)-(2.27), making the justifiable assumption that, owing to the insensi- 
tivity of K* to 1, N could be taken as constant and equal to 24 times the observed 
pendulum frequency, and that the mode in question had a p value of about in. 

Replacing the term +A%4(l + Z 2 )  by ~ * 2 ( 1  +P) in (2.14), the coefficient A was 
determined. The intersection of this A with the contour eipn = e2Knlwo in figure 1 
then gave the predicted value for Q and thus from (2.14) the predicted tc,, for 
instability. 

gradient, 0.2405 em3 g-l (cf. Mowbrays' (1967) value of 0.231). 
t Direct calibration gave the required value of anlap, the refractive-indexldensity 
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uM and 
standard 

Condition deviation p(]zl < 0 . 7 ~ ~ )  

Disturbance mode could be sus- 7.055" 70.85 
tained indefinitely at a level 
perceptible using schlieren 
technique at maximum 
sensitivity 

became imperceptible cr = 0.056" 

cr = 0.086" CT = 1-17' 

Disturbance mode decayed and 6-67' 

Using procedure outlined in text 6.95" 70.77' 

TABLE 1 

I Pendulum experiment 
o,, = 0.5891 s - ~  

Theory 

For the experiment with the profile given in figure 6 the results in table 1 
were obtained. 

The experimental values were derived from the measured excursions of 
several neutrally buoyant particles over two cycles of oscillation under steady 
conditions maintained over about 100 cycles. In the unstable case averaging 
over two cycles minimized the movement due to the unstable mode. Experi- 
mental p ' s  were taken from the cine record of a well-developed instability,i 
filmed prior to the test for determination of the critical aJf. 

Agreement with theoretical predictions for both aA1 and p is remarkably good 
and this substantially confirms the mechanism of parametric instability. It will 
be appreciated from figure 1 that the sensitivity of p to A and Q (and thus, of 
aAw to w/X) for growth factors eiFn near unity in the vicinity of A4 = 1 made 
the foregoing procedure for the determination of A* necessary for accurate 
verification. 

Further confirmation was found from the observed phase of the disturbance 
mode relative to the forcing oscillation. This was not measured precisely, but as 
well as could be judged from the cine records the nodes in p lead the nodes in a by 
31.5" & 3" for a weak but detectable instability. 

From Rhines (1970, equation (6)), the Floquet solution to (2.13), represented 
in the form 

a 

X(s) = exp ( ips )  C,exp (2ins)J  
n=--m 

has, in the vicinity of the primary resonance O ( p -  1) < Q, only two dominant 
terms, whose coefficients are related by 

C--JCo = u/Q. 

u is defined as A - p2, and is determined from the defining variables through the 
relation 

A = I + (p - [4(p - + Q 2 ] & .  

Though revealed clearly by schlieren photographs, the dimensionless amplitude 
Apm/pI, was never greater than about 0.1, where A p  is the maximum vertical density 
perturbation. 

2 Our ,u corresponds to Rhines' m. 
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P / i W  

FIGURE 7. Density profile and closing characteristic ray trajectory for 
measurement of critical amplitude aM. 

For the present experimental conditions the last expression cannot be satisfied, 
and A lies within the 'stopping band' 1 - Q < A < 1 + Q for which p = 1. 
Within the band solutions are admitted only for modes whose node, given by 
C-,/Co, is at 

So = &arg[-8/Q+i(l+8/Q2)4], 

where 3 = A - 1 (see Rhines 1970, $ 5 ) .  
For the results tabulated above A = 0.8803 and Q = 0.1443, thus So = 16.97", 

which leads the node in a by 28.03", comparing well with the above observed 
value. 

Similarly good agreement was obtained in other experiments, but less precise 
methods of measuring aM and p'(z) introduced ambiguities weakening the 
validity of the results, so these results will not be given here. 
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5. Evidence of parametric instability from previous experiments 
In  photographs taken during previously reported experiments on internal 

waves in a continuous stratification (McEwan 1971, 1973) there is found 
to be evidence of localized parametric instability. Figure 8 (a)  (plate 6 )  is an 
enlargement of a shadowgraph in the same sequence as figure 6 of McEwan 
(1971), and was taken a t  about time (f) of that sequence. The arrows indicate 
a series of parallel diagonal distortions in the density field. These are distinguish- 
able from the dyed isopycnal surfaces, which shorn large-scale modulation 
resulting from resonant interaction. Their shallow angle to these surfaces and 
their regularity and symmetry within the background motion all suggest that 
the distortions are the development of a parametric instability upon the forced 
mode. This mode had a characteristic angle arcsin wlN (to the horizontal) of 30', 
and a half-frequency mode would then have had an angle of arcsin wJ2N = 14.5'. 
As indicated on the figure, this is close to the observed angle. 

Figure 8 ( b )  (plate 7) shows a similar magnification of a shadowgraph belonging 
to a sequence part of which is published in Turner (1973, plate XXIV) of a standing 
wave in which low-order resonant interaction does not take place. Again, 
diagonal distortions can be detected. In this case their angle (about 10") to the 
local isopycnal surface slightly exceeds the half-frequency angle (about 8"). 

A third example is shown in two stages (figures 8 c, d ,  plates 7,8) ,  separated in 
time by about 1 min or 9.3 'buoyancy periods ' 27~/N.  Two internal wave beams 
were projected from the top corners of a rectangular tank (see McEwan 1973). 
The axes of these beams are indicated by diagonal solid lines on the figures. The 
figures are shadowgraphs, and the smaller dark spots are suspended liquid 
droplets, used for motion measurement. As can be seen, there was a rapid 
development of a region of density disturbance along a diagonal direction a t  
a lower angle than either of the rays. If this were the result of the dispersion of 
free modes generated somehow through the interaction of the forced beams these 
modes would have a characteristic angle of 9.8" to the horizontal. This is shown 
as a broken line on figure 8 ( c ) ,  evidently shallower than the disturbances beyond 
the interaction region, where the solid lines cross. The angle for half-frequency 
parametric instabilities developing on the right-hand beam, arcsin uright/2N, is 
14.8". This is shown in figure 8 ( d )  to correspond closely to the observed disturb- 
ance angle (unlike the example of figure 8 (a)  the angle is drawn relative to the 
horizontal, since the isopycnal slope is comparatively small, and non-uniform in 
space; the right-hand wave beam had a horizontal wavelength of 30.5 cm; the 
grid on figures 8 (c) and (a) is 10 cm square). 

A notable feature of the foregoing observations was that in each case the 
appearance of these fine-scale shallow distortions was an immediate harbinger 
of ' traumata ), irreversible layering intensifications of discontinuities in the 
density gradient. Furthermore, an observed coincidence of scale and location 
indicates that they were generators of these traumata. Hence there is a strong 
suggestion that parametric instability is an important direct mechanism for the 
creation of layered structure in a continuous stratification under the action of 
internal waves. 
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6. Application to the oceanic thermocline 
The foregoing observations lead naturally to the question of whether para- 

metric instability is a potentially important dynamical process in the ocean and 
atmosphere. Since oceanic internal wave spectra are the better known, it is to 
these that attention is directed here. 

Garrett & Munk ( 1 9 7 2 ~ )  derived and fitted to observations a horizontally 
isotropic internal wave energy spectrum. They then used this (Garrett & Munk 
19723, referred to as GM) to estimate mixing by shear instability. Their proposal 
that shear instability and not overturning, as suggested by Orlanski & Bryan 
(1969), produced most mixing was based on the result that the unit isopycnal 
slope was 38 times the r.m.s. slope predicted using their spectrum, while a 
Richardson number of 4 was reached with only 5*7(N(z)/NT)-4 r.m.s. shears, 
where NT is the buoyancy frequency at the top of the thermocline. 

From equation (3.1) of GM the expression for the mean-square slope is, in our 
notation (with an asterisk indicating non-dimensional quantities), 

where w: is the local inertial frequency, E is a constant, ji defines the number of 
modes for which E is fitted to spectra data and J is the wavenumber range, 
limited to 

J = j , j - ( o * 2 - ~ ? 2 ) & .  (6.2) 

so that, except for frequencies near to w z ,  the integrand is virtually constant. 
In  a continuous spectrum the contribution to the mean-square slope from a 
bandwidth a13 is proportional to Aw". 

We need to know whether a given internal wave mode can be parametrically 
amplified in the presence of a spectrum of waves producing the above slopes. If 
the spectrum were truly continuous the equation for solution would be, at its 
simplest, of second order with random continuous coefficients, obviously beyond 
the scope of the present study. However, progress is possible with the reasonable 
proposition that, at  any single place and time in the thermocline, the spectrum, 
or large-scale parts of it, is dominated by a finite, possibly small number of wave 
modes. Each of these modes, provided that it remains coherent for several 
cycles, is independently capable of parametrically exciting finer-scale waves of 
approximately half the frequency. Conversely, a fine-scale model is liable to 
energization by trains of large-scale waves of appropriate, nearly double 
frequency. Over a narrow bandwidth Aw,*, the component of the r.m.s. maximum 
slope (in a given vertical plane containing the vector wavenumber of the mode 
being pai*ametrically amplified) might then be, on average, from (6.3), 
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on the assumption that EJf,  in a given direction equals the r.m.s. slope amplitude 
averaged over two directions. 

Consider Aw: to be defined as the bandwidth for unstable parametric forcing 
of a single mode (denoted by a subscript 2 ) .  For simplicity only the contribution 
from frequencies near 2w,* are taken, the others being much smaller. With the 
definitions given in (2.14) and neglecting the small viscous term in A ,  an average 
value of 2Q/A is defined: 

where I, = m,/k,. The Floquet solutions, figure 1, give 

2 Q / A  = i j iM012, (6 .5)  

where A4 5 2w,/w,. w2(Z2) is given by the dispersion relat,ion of GM, equation ( 2 4 ,  

1, = i v / (w; -w; )& ,  (6 .6)  

which differs from (2.7) through the effects of rotation and stratification non- 
uniformity. 

For an individual mode subjected to viscous damping, growth occurs when 
the condition (2.18) is satisfied, i.e. for a specific mode 

Re (ipw,) > vkz( 1 + Z:). (6.7) 

For an ensemble of modes, encompassing a bandwidth Am,, the left-hand side is 
replaced by a value averaged over this bandwidth, i.e. 

where A(A-4) = [w,(ip = 0, A < 1) - w0(i,u = 0, A > 1)]/2w, = AwO/2w,. 

The value of this integral is found as a function of 2QA-l(Awo/2w2)-t;  by graphical 
integration, the following empirical relation is determined : 

Re (i,uw0)/2w, N O~113(2QA-1(Aw,/2~,)-~)2~12 as &-+ 0. (6.8) 

Wavenumbers and frequencies were scaled by GM using 7.665 x 10-6rad cm-1 
and 5.23 x 10-3rads-1, these being appropriate to a buoyancy depth scale of 
1.3 km and a maximum buoyancy frequency of 3.0 cycles per hour. wi was taken 
as 0.0133 (lat 28.6") and the GM spectrum was fitted with ji = 20 and 

Let the vertical wavenumber of the unstable mode be m2 ( = Z2k2). Then 
substituting (6 .4) - (6 .6)  into ( 6 . 8 ) ,  and replacing Reipw, on the left-hand side of 
(6.7),  modes will be unstable if 

E = 2 n x  10-5. 

- 

m2 < 0 . 1 4 5 N * 2 ' 0 6 ~ 2 1 0 3 ( ~ ~ 2 - 0 ~ 2 ) - - 1 ' 0 6 ( N * 2 + ~ ~ 2 - ~ ~ 2 ) - - 3 .  (6.9) 

At the higher frequencies N* 9 w: B w, * , this becomes 

m2 < 0.145N*1.06~,*-109 cm-1, 

and for w,* = w: +A@* - w? 

m2 < 0439N*1.06(Aw*)-1 cm-l. 
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The coefficient in the last expression is reduced through the drop in the integrand 
of (6.3) as w*+w,.  

From the above, even admitting possible inaccuracies amounting to an order 
of magnitude in both the spectrum definition and the present simplified treat- 
ment, it seems very likely that parametric instability might be excited in modes 
with vertical wavelengths down to tens of centimetres. Finest-scale instability 
is favoured in the lowest frequency modes and should be most common where N* 
is a maximum. 

This susceptibility is not intended to suggest that parametric instability is 
a significant direct cause of oceanic mixing. Shear and overturning instabilities 
are still likely to be the ultimate mechanisms. It is seen, rather, as an effective 
means for cascading energy to lower frequencies and larger vertical wave- 
numbers, with the distinction from its genus, resonant interaction, that with the 
spatial wavenumbers sufficiently widely separated in magnitude, the process 
becomes insensitive to the forcing wavenumber. 

A potential criticism of the foregoing treatment is that it effectively considers 
time averages of the amplitude a t  a point, while in a real system (extensive or 
unbounded), the dispersion of a group of fine-scale waves forced by a given 
excitation event would rapidly attenuate the group. I n  answer it is noted that 
the group velocity of the large-scale waves is greater by a factor roughly propor- 
tional to the ratio of the vertical wavelengths of the large and fine waves, and also 
that the spatial extent of a large-scale wave group is likely to be greater; thus 
the latter engulfs and ‘outruns’ the fine-scale group, and provides a spatially 
averaged forcing equivalent to time averaging, notwithstanding dispersion. The 
‘spreading’ of traumata along the right-hand internal wave beam as shown by 
comparing figures 8 ( c )  and (d )  provides some evidence that dispersing waves can 
continue to derive energy from a large-scale field. 

I n  the oceanic context, then, the process is visualized as follows: groups of 
fine-scale waves of low frequency are advected by the field of larger waves, and 
are energized whenever this field contains a coherent group of substantially 
larger wavelength and a frequency within the forcing bandwidth. Because the 
growth-rate coefficient is exponential, there is a tendency to  sustain pre-existing 
structure. If amplitudes grow large enough, irreversible traumatic distortion of 
the density field of the kind detected in experiments might occur, producing 
a layered structure of the same scale. Conversely interaction of this layered 
structure with the large-scale field could conceivably produce internal wave 
modes for its own perpetuation. 

Such possibilities do not conflict with observed oceanic fine-structure. Osborn 
& Cox (1972) found vertical temperature-gradient fluctuations down to a scale 
of centimetres, with highest intensities in regions where N* was locally greatest. 
These conform with the predictions of (6.9) for wg 2: &%”, which give a minimum 
vertical wavelength 2n/m, of 21 cm. The frequency spectrum of the fine scales is 
not determinable, but, as Osborn & Cox note, the diffusion time scale is of 
order 2nlN. If diffusion is presumed to truncate the spectrum when 

2n 2n 4 
m2 
- = (4K-J ) 
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where k‘, the thermal diffusivity, is 0.0014 cm2s-1, then substituting in (6.9)) the 
vertical waveIength minimum at truncation is 

A, = 27rr/m, > 8-07N*-f 

or with N* N 3.6, appropriate to Osborn & Cox’s observed local high gradient 
regions, A, > 5.2  cm, for which w z  N 0.5. In other words the minimum predicted 
wavelength is close in magnitude to the finest structure observed, it diminishes 
with increasing iV* and the cut-off frequency is not greater than the mean 
maximum buoyancy frequency, and is an order of magnitude lower than local 
maxima. 

7. Concluding remarks 
Parametric instability in stably stratified media, regarded as a member of 

a class of wave interaction phenomena, is evidently an important one. For its 
occurrence at realistic disturbance levels, the limitations on the frequency range 
for either the forcing wave or the unstable mode are not stringent. Furthermore, 
the requirement for the presence of three modes of appropriate wavenumber and 
frequency in the case of resonant interaction is relaxed when the wavelength of 
the forcing mode is larger to a ‘sufficient’ degree than that of the unstable mode. 

The previous experiments (95) indicate that the ‘sufficient’ scale difference is 
about an order of magnitude but the present simple theory gives no more precise 
definition. It can be seen from the basic equations (2.1) and (2.2) that retention 
of spatial derivatives for both modes increases considerably the complexity as 
well as the order of the resultant growth equation and solution is not straight- 
forward. 

By avoiding as well as possible the above limitation and the likelihood of 
resonant interaction, the present experiments confirmed the predictions of simple 
theory. For practical reasons the experiments did not cover a wide range of 
defining variables, but the one quantitative result was unequivocal. 

From the content of S 6 the process appears to be worthy of further attention 
in its application to the formation and maintenance of wavy microstructure in 
the ocean and atmosphere. Apart from the observations of 3 5 no direct connexion 
has been established between the occurrence of irreversible distortion and mixing 
and the emergence of the instability, but there is little doubt that in its presence 
the susceptibility to small-scale static and shearing instabilities is increased. In  
the atmosphere, larger-scale vertical structure might also be parametrically 
sustained by mesoscale baroclinic effects of a quasi-periodic nature, such as sea 
breezes and fronts. Furthermore, the gross similarity between internal waves and 
other geophysical finite amplitude wave phenomena, notably inertial, Rossby 
and baroclinic waves, leads one to speculate that the mechanism may have other, 
more general applications. 

The close collaboration and advice of Dr P. G. Baines throughout the course 
of this work is gratefully acknowledged. 
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( b )  

FIG~JRES 5(a ,  b ) .  For caption see plate 3. 
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(Facing p .  688) 
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FIGURES 5 ( c ,  d ) .  For caption see platc 3. 
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( e )  

FIGURE 5 .  Sclilieren observations with a vertical knife-edge, following 'horizontal' forcing. 
(a )  aM(t = 0) _N 5". No parametric instability. The 45" cross-mode is due to boundary- 
layer displacement effects. ( b )  a,(t = 0) N 15", wo 2: in s-l. Immediately after cessation 
of forcing. Cross-mode only present.. Note cylindrical boundary-layer turbulence. ( c )  50 s 
after ( b ) .  Parametric instability clearly present. ( d )  50 s after ( c ) .  ( e )  aM(t  = 0) N 20" after 
full development of the instability. 
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FIGURE G(a). For caption see plate 5 .  

Plate 4 
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( b )  

FIGURE 6. Schlieren observations with a horizontal knifeedge, during stistaincd ' peiidulurn ' 
forcing. ( a )  trM = 14', well-developed instability. ( b )  aM = 8.5", instability irndeteet,able. 
Horizontal knife-edge at maximum sensitivity reveals density-gradient defects. Note the 
virtual absence of cross-modes. 
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FIGURE 8 ( u ) .  For caption see plate 8. 
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( c )  
FIGURES 8 ( h ,  c) .  For captiori scc platc 8. 
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Plntr 7 
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FIGURE 8. ( a )  Evidence of parametric iristahility getiernted by large-scale standing \vavcs. 
This figure. a shadowgraph, is enlarged from the seqiierice given in McEwari (197 1 ,  figure 6) .  
Tank depth is 32.6 cm. ( b )  Signs of parametric instability immediately preceding traumatic 
brealtup of a large-scale standing wave. Figure is a shadowgraph erilargement from a 
sequence published by Turner ( 1973, plate XXIV, figure 10.5). (c) Shadowgraph taken 
during an experiment (McEwari 1073) on the intcraction of crossed internal wave beams. 
-, ray directions; the left-hand ray had a horizontal wavelength of 16 cm and the right,- 

].land ray wavolerigtli was 30.5 cm ; ---, the characteristic angle of forced intoraction mode. 
Grid scale is 10 em. (d )  9.3 (27r/N) later than fc). Traumatic distortions 11ave developed 
dong t,he right-hand ray; I.ialf-fret~usncy chamctjcristic angle ( 14.8') of this ray is shown. 
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